If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+10w-120=0
a = 1; b = 10; c = -120;
Δ = b2-4ac
Δ = 102-4·1·(-120)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{145}}{2*1}=\frac{-10-2\sqrt{145}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{145}}{2*1}=\frac{-10+2\sqrt{145}}{2} $
| 28+88+b=180 | | w^2+10-120=0 | | 8(c-9)=6(2c12)-4c | | F(0)=2x^2-7x+6 | | 9×-4(2-×)=7(x+2)+2 | | 14+6v-3-1=3v-8 | | 8+(1/2)n=14 | | 2^x=8192 | | 2(x+2)-3(x-3)=20 | | 22-x=6x+8 | | 17x-2+7x+35=-59 | | X+2x+3x4x=360 | | -100=20g | | 72+a=180 | | s+2s+3s-4+((s*2)+5)+6s=57 | | s+2s+3s-4+((s*2)+5)+3s=57 | | -5x^2+30=20 | | 0.6x–1.5=1.8 | | 12+.5p=18+2p | | F(-5)=4x^2-3 | | 5-8p=-1-7p | | 8/3x+1/3x=22/3+7/3x | | (7)*9/2=x+3 | | 14-1/5(m-10)=2/5+m | | 21x+18=3(7x+6) | | 2=k-8/3 | | 3a+2a+1=2a+5 | | 3x×7=34 | | 35x+30=5(7x+6) | | 31-7x=15+9x | | s+2s+3s-4+((s+5)*2)+6s=57 | | F(-4)=-3x^2+5x |